

LWA-10k NIR

Analyzer Unit

Input	min.	max.	typ.
Wavelength range ¹⁾	1064 nm	1625 nm	1550 nm
Input power range	0.5 mW	8 mW	5 mW
Input power stability	±5%		
Laser type	CW, single-mo	de	
Input fiber type	SM or PM (reco	ommended), FC/	ΑP
Scan stroke (@ fscan > 10 Hz)	_	40 MHz	

¹⁾ For customized wavelength ranges please contact: service@highfinesse.de

Linewidth Analyzer LWA-10k NIR

Analyzer Unit

Spectral and Frequency Noise Specifications 2)

		10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	> 1 Mhz
Noise floor N _{Δν} @ typ. input power and wavelength ³⁾	Hz/√Hz	200	100	30	20	15	10
Laser phase noise floor @typ.	rad/√Hz	20	1	30 m	2 m	150 μ	10 μ
input power and wavelength 4) 5)	wer and wavelength ^{4) 5)} dBrad/√Hz	26	0	-30	-54	-76	-100
signal noise @ typ. input	rad/√Hz/m	6.2μ	3.1 μ	920 n	620 n	460 n	310 n
	dBrad/√Hz/m	-104	-110	-120	-124	-126	-130
Frequency noise density range (F	Iz/√Hz)	10 M					
Minimum intrinsic linewidth (Lorentzian linewidth)		<2kHz					
Effective linewidth range (β-separation)		<1kHz-20MHz					
Dynamic range		60 dB					

- 2) Specified for 5 mW input power at a wavelength of 1550 nm.
- 3) $N_{\Delta v}$ is the noise floor of the instrument in terms of the square root of the power spectral density of the frequency noise.
- 4) The phase noise floor corresponds to the noise floor of the square root of the power spectral density of the phase. It is calculated from $N_{\Delta v}$ by the formula $1/f \times N_{\Delta v}$. Additionally, phase noise is often specified in terms of $\mathcal{L}(f)$ which can be calculated with the formula $\mathcal{L}(f) = 1/f^2 \times N^2_{\Delta v}/2$.
- 5) Not included in the software, can be calculated by the user from exported data.
- 6) This is the calculated noise of the interferometer phase of a two path interferometer with length imbalance L (in meters). The alculation is performed for a given frequency noise density floor by $2\pi n L/c \times N_{\Delta\nu}$ with n being the refractive index of the reference fiber interferometer material and c being the speed of light in vacuum. Values in the table are given for an refractive index of n = 1.46 and a reference length of 1 meter.

Linewidth Analyzer LWA-10k NIR

Analyzer Unit

Lineshape Specification

Effective linewidth range (optical linewidth) [curve fitting method]	< 5 kHz – 10 MHz
Dynamic range	60 dB
Frequency noise bandwidth 7)	10 Hz – 10 MHz

Miscellaneous

Interface	Ethernet and USB 3.0
Analog output	± 7.5 V (50 Ω)
Dimensions	440 × 340 × 155 mm
Weight	12.0 kg

Digitizer Module

Sample rate (Sa/s)	62.5 M
Resolution	16 bits
Acquisition time	1 ms - 100 ms
Evaluation time	10 ms - 1 s
Interface	USB 3.0 type B
Dimensions	210 × 200 × 74 mm
Weight	2.0 kg

⁷⁾ According to a –3 dB criterion.

Linewidth Analyzer LWA-10k NIR

Software

Operating system	Microsoft® Windows® 10 or newer	
CPU (recommended)	Intel® i5 8600 / AMD Ryzen™ 5 2600 or better	
Memory (recommended)	16 GB RAM or more	
Graphical evaluation options	Frequency noise density spectrum, lineshape spectrum, intrinsic (Lorentzian) linewidth, effective (optical) linewidth	

Further Information

For further technical information, application examples, diagrams and for customisation of linewidth analyzers please contact:

HighFinesse Service

service@highfinesse.de

Additional information and distributors: www.highfinesse.com

