

Wavelength Range	min.	typ.	max.
450 – 1064 nm	450 nm	780 nm	1064 nm
Input power range (@typical wavelength)			
0.5 – 8 mW	0.5 mW	5 mW	8 mW
Required Input Power Stability			
±5%			
Laser type			
Laser type CW, single mode			
Input fiber type			
PM, FC/APC			
Maximum frequency stroke (@ f > 10Hz)			
40 MHz			

Frequency Noise Specification

Noise floor N _{∆v} @ typ. input power and wavelength ⁵⁾		10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	> 1 Mhz
	Hz/√Hz	500	150	60	60	50	30
Laser phase noise floor @typ. input power and wavelength ^{1) 6)}	rad/√Hz	5	1.5	60 m	6 m	500μ	30 µ
	dBrad/√Hz	24	3.5	-24	-44	-66	-90
Equivalent interferometer signal noise @ typ. input power and wavelength ^{1) 3)}	rad/√Hz/m	16 μ	4.6 μ	1.8μ	1.8 μ	1.6µ	920 n
	 dBrad/√Hz/m	-96	-106	-114	-114	-116	-120
Frequency noise bandwidth ²⁾		10 Hz – 10 Mł	łz				
Minimum measurable intrinsic linewidth (lorentzian linewidth @	1 µs)	<12 kHz					
Effective linewidth range (optical linewidth @ 100 ms)		-201- 20M					
[β-separation method]		< 20 k – 30 M					
Relative intensity noise limit (lorentzian linewidth)		-					
Dynamic range		60 dB					

1) Not included in the software, can be calculated by the user from exported data.

2) According to a –3 dB criterion.

3) This is the calculated noise of the interferometer phase of a two path interferometer with length imbalance L (in meters). The alculation is performed for a given frequency noise density floor by $2\pi nL/c \times N_{\Delta v}$ with n being the refractive index of the reference fiber interferometer material and c being the speed of light in vacuum. Values in the table are given for an refractive index of n = 1.46 and a reference length of 1 meter.

5) $N_{\Delta v}$ is the noise floor of the instrument in terms of the square root of the power spectral density of the frequency noise.

6) The phase noise floor corresponds to the noise floor of the square root of the power spectral density of the phase. It is calculated from $N_{\Delta v}$ by the formula $1/f \times N_{\Delta v}$. Additionally, phase noise is often specified in terms of L(f) which can be calculated with the formula $L(f) = 1/f^2 \times N_{\Delta v}^2/2$.

Lineshape Specification

Effective linewidth range (optical linewidth) [curve fitting method]	< 20 kHz – 10 MHz
Dynamic range	60 dB
Miscellaneous	
Interface	Ethernet
Analog Output / error signal	BNC \pm 7.5 (50 $\Omega)$ \pm 15 (high impedance) V, single ended
Cutoff (highpass filter)	10 Hz
Dimensions	440 mm × 340 mm × 155 mm
Weight	12 kg
Digitizer Module	
Sample rate	62.5 (max.) MSa/s
Resolution	16 bits

4) Windows 10 or newer, Intel i5 8600 / AMD Ryzen 5 2600 or better, 16GB RAM or more.

1 – 100 ms

10 m - 1 (typ.) s

USB 3.0 Type B

2 kg

210 mm × 200 mm × 74 mm

Acquisition time

Evaluation time 4)

Communication

Dimensions

Weight

Further Information

For further technical information, application examples, diagrams and for customisation of linewidth analyzers please contact:

HighFinesse Service service@highfinesse.de

HighFinesse GmbH Neckarsulmer Straße 5 72072 Tübingen, Germany

T + 49 (0) 7071 - 53 918 0 F + 49 (0) 7071 - 53 918 99 M info@highfinesse.com

Additional information and distributors: www.highfinesse.com

HighFinesse Linewidth Analyzer · LWA-10k VIS · 3-2025 This document provides general information only and may be subject to change at any time without prior notice.