

Available Measurement Ranges

LSA 2R	VIS	330 – 1180 nm
LSA	Standard	330 – 1180 nm
	UV-I	248 – 1180 nm
	UV-II	192 – 800 nm
	UV-II/VIS	192 – 1180 nm
LSA	VIS/IR-I	330 – 1750 nm
	IR-II 1)	IR: 1000 – 2250 nm + VIS: 500 – 1000 nm

Absolute Accuracy²⁾

LSA 2R	330 – 420 nm	2 pm
	420 – 1180 nm	3 GHz
LSA Standard / UV	192 – 330 nm ³⁾	6 pm
	330 – 390 nm	3 pm
	390 – 1180 nm	6 GHz
	Quick coupling accuracy 3)	20 GHz
LSA VIS / IR-I	VIS: 330 – 420 nm	6 pm
	VIS: 420 – 1060 nm	6 GHz
	IR-I: 1060 – 1750 nm	25 GHz
LSA IR-II	IR-II: 1000 – 2250 nm	25 GHz
	VIS: 500 – 1000 nm	60 GHz

- $1) \ Measurements in the range from \ 500-1000 \ nm \ are possible but \ with \ limitted \ absolute \ accuracy \ as \ specified.$
- 2) According to 3σ criterion.
- 3) With 50 μm multi mode fiber.

Wavelength Deviation Sensitivity/Measurement Resolution

LSA 2R	330 – 420 nm	1 pm
	420 – 1180 nm	1.5 GHz
LSA Standard / UV	192 – 330 nm ³⁾	5 pm
	330 – 420 nm	3 pm
	420 – 1180 nm	3 GHz
LSA VIS/IR-I	VIS: 330 – 420 nm	3 pm
	VIS: 420 – 1060 nm	6 GHz
	IR-I: 1060 – 1750 nm	12 GHz
LSA IR-II	IR-II: 1000 – 2250 nm	12 GHz
	VIS: 500 – 1000 nm	30 GHz

Resolving Power and Spectral Resolution		Use of single Resolving Powe	mode fiber r (λ/Δλ) ⁴⁾ Spectral resolution Δλ @1000 nm	Use of multimode fiber 5) Resolving Power (λ/Δλ) 20000
LSA 2R	LSA 2R		0.025 nm	
LSA Standard/U	JV	20000	0.05 nm	10000
LSA VIS / IR-I	VIS: 330 – 1060 nm	20000	0.05 nm	10000
	IR-I: 1060 – 1750 nm	4000	0.25 nm	2000
LSA IR-II	IR-II: 1000 – 2250 nm	2800	0.36 nm	2000
	VIS: 500 – 1000 nm	2000	0.5 nm	1000

³⁾ With 50 μm multi mode fiber.

⁴⁾ Spectral resolution $\Delta\lambda = \lambda / R$; R = resolving power. Assuming that two features are resolved if they are separated by more than the FWHM of the instrument response function.

⁵⁾ Please use 50 μm MM fibers. Please do not use fibers with core diameter > 50 μm .

Linewidth Estimation Accuracy 6)

LSA 2R		4 GHz
LSA Standard / UV		7 GHz
LSA VIS / IR-I	VIS: 330 – 420 nnm	3 pm
	VIS: 420 – 1060 nm	7 GHz
	IR-I: 1060 – 1750 nm	40 GHz
LSA IR-II	IR-II: 1000 – 2250 nm	60 GHz
	VIS: 500 – 1000 nm	70 GHz

Maximum Linewidth

LSA 2R	0.6 THz (FWHM)
LSA Standard/UV, LSA VIS/IR-I, LSA IR-II	1.5 THz (FWHM)
Customization to measure broader sources on request.	

Measurement Speed 7)

LSA Standard / UV, LSA VIS / IR-I, LSA IR-II	Data Acquisition	500 Hz
	Wavelength and spectrum calculation	300 Hz
	Wavelength and spectrum calculation with live display	100 Hz
LSA 2R VIS	Data Acquisition, Wavelength and spectrum calculation	60 Hz

⁶⁾ With the use of singlemode fibers. Not better than 15 % of the linewidth. The algorithm assumes that the laser lineshape is given by a Lorentzian.

⁷⁾ Depending on PC hardware and settings. Without autocalibration usage.

Minimum Required Input Energy and Power⁸⁾

LSA Standard, LSA 2R LSA UV-I, LSA UV-II, LSA UV-II/VIS		0.0001 – 0.04 μJ (or μW) 0.0001 – 0.1 μJ (or μW)
	IR-I: 1060 – 1750 nm	0.02 – 2 μJ
LSA IR-II		0.02 – 2 μJ

Diffraction Grating, Free Spectral Range 9)

LSA 2R	2.3 THz
LSA Standard / UV, LSA VIS / IR-I, LSA IR-II	~5.4 THz

Coupling Fiber and Connector

Single mode fiber set, 50 µm MM fiber
Use of single mode fiber recommended
FC/PC connector at the spectrometer required

Calibration

LSA Standard/UV, LSA VIS/IR-I	Internal calibration source , calibration period ≤ 1 month

Warm-up Time

 $No\ warm-up\ time\ under\ constant\ ambient\ conditions.\ Otherwise\ until\ thermal\ and\ air\ pressure\ equilibrium\ is\ reached$

- 8) The cw power interpretation in $[\mu W]$ compares to an exposure of 1s (generally the energy needs to be divided by the exposure time to obtain the required power).
- 9) Custom FSR on request.
- 10) e.g. SLR-1532.

Dimensions L × W × H
325 × 180 × 77 mm
Weight
2.8 kg
Interface
High-speed USB 2.0 connection
Power Supply
Power consumption < 2.3 W, supply directly via USB cable; LSA IR-II: external power supply included

Further Information

For further technical information, application examples, diagrams and for customisation of the Spectrometers please contact:

HighFinesse Team

service@highfinesse.de

HighFinesse GmbH Neckarsulmer Straße 5 72072 Tübingen, Germany

T+49(0)7071-539180 F+49(0)7071-5391899 M info@highfinesse.com

Additional information and distributors: www.highfinesse.com

