

Available Measurement Range

WS8-2 Standard (VIS)	330 – 1180 nm

Absolute (and Other) Accuracies 1)

330 – 375 nm	10 MHz ^{2) 3)}
375 – 1180 nm	2 MHz ^{2) 3)}
Quick coupling accuracy (with 50 μm multi mode fiber)	100 MHz
Wavelength deviation sensitivity/Measurement resolution ⁴⁾	0.1 MHz

Measurement Speed 6)

1000 Hz

Required Minimum Input Energy and Power⁷⁾

0. 1 1(110)	
Standard (VIS)	0.08 – 60 μJ or μW

FSR of the Fizeau Interferometers (Fine/Wide Mode)

2 GHz/20 GHz 5)

- 1) According to 3σ criterion, but never better than 20 % of the laser linewidth.
- 2) \pm 2 nm around calibration wavelength. Outside of this range, the accuracy as WS8-10.
- 3) \pm 200 nm around calibration wavelength. Outside of this range, the accuracy as WS7-30.
- 4) Standard deviation. WS8-2 requires photonic crystal (endlessly singlemode) fibers to reach this resolution.
- 5) Each instrument in each mode can measure lasers with a linewidth up to 30 % of the correspondig FSR.
- 6) Depending on PC hardware and settings.
- 7) The CW power interpretation in $[\mu W]$ compares to an exposure of 1s (generally the energy needs to be divided by the exposure time to obtain the required power).

Calibration
SLR-780 HeNe or any well known laser source Δv < 1 MHz
Recommended calibration period ≤ 2 minutes
Warm-up Time
> 30 min. warm-up, or until ambient equilibrium
Dimensions L × W × H
340 × 252 × 106 mm
Weight
6.4 kg
Interface
USB 3.0
Power Supply
Power consumption < 2.3 W, power provided directly via USB cable

Included Options

External Trigger (TTL)

The TTL option guarantees exact synchronization of the wavelength measurement with other measurement tasks in your lab. It provides low-noise signals without parasitic parts when measuring pulsed signals with low duty cycles. The wavelength measurement can be triggered by sending a standard 5 V TTL signal to the input of the wavemeter (for example generated by a delay generator). Necessary cables to connect to a BNC output are included.

Please note, if the option MC is ordered together with the TTL option, the TTL mode can only be used if the switch is set fixed to one input channel.

Photonic Crystal Multichannel Switch (MC)

In order to measure the frequencies of more than just one laser at a time, an opto-mechanical switch is used. The combination of our high-speed wavelength meters with one of the quickest fiber switches available allows up to eight channels to be measured almost simultaneously. Exposure time and other parameters can be defined independently for each light source.

The WS8-2 series features the use of an endlessly singlemode switch based on photonic crystal technology. This allows to measure any laser wavelength on all switch input channels within all measurement ranges of the WS8-2 NG.

The TTL mode can only be used if the switch is set fixed to one input channel.

Options

Laser Control (PID)

With the PID option it is possible to stabilize the frequency of a laser connected to the wavelength meter using a software based proportional-integral-derivative controller (PID controller). Unlike analog PID electronics, the PID option provides software based signal processing, allowing the laser to be stabilized to a specific user defined frequency or regulated with an arbitrary pattern.

This makes it extremely useful in experiments where the laser frequency has to be actively regulated or varied to fit changing experimental conditions, such as laser cooling, atomic detection, trapping and spectroscopy.

Combined with the MC option the wavelength meter can be used to stabilize multiple lasers simultaneously. The regulation speed, quality and absolute accuracy match the measurement speed, relative accuracy and absolute accuracy of the wavelength meter respectively. The measurement speed is not affected by the regulation.

Multichannel Laser Control (MCLC)

The MCLC option combines the capabilities of the photonic crystal switch and PID option in one instrument. It can be ordered with 4 or 8 channels. This solution for 4 or 8 channel PID is compact and circumvents the need for a computer with a free PCIe slot such that it is possible to monitor and control up to 8 lasers using the HighFinesse. wavemeter connected to a laptop as the 4 or 8 analogue outputs with maximum ± 10 V are located at the MCLC instrument. At the same time the MCLC guarantees for the same excellent feedback rate and precision the HighFinesse PID option is known for. Adapters to connect from the MCLC to the laser from Lemo 00 to BNC are included in the scope of delivery.

Options

External Calibration (CAL)

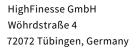
Standard HighFinesse wavelength meters up to an absolute accuracy of 60 MHz feature autocalibration via an integrated calibration source. This guarantees the accuracy and stability of measurements with our wavelength meters. For the higher accuracies we offer a variety of frequency stabilized, narrow linewidth, laser sources with up to \pm 0.5 MHz frequency stability for different applications.

For further information see our product description here: https://www.highfinesse.de/cal

Typical Applications

The WS8-2 is the highest-end solution for wavelength monitoring and control with an absolute accuracy of 2 MHz and a wavelength deviation sensitivity of 0.1 MHz. It comes with the photonic crystal fiber technology enabling multichannel operation in the spectral range of the wavelength meter.

The 2 MHz accuracy presumes, that the instrument is supported by one of our calibration sources based on atomic spectroscopy (or an laser source provided with comparable accuracy).


Further Information

For further technical information, application examples, diagrams and for customization of the WS8-2 please contact:

HighFinesse Team

service@highfinesse.de

Additional information and distributors: www.highfinesse.com

